扩展就是向一个已有的类、结构体、枚举类型或者协议类型添加新功能(functionality)。这包括在没有权限获取原始源代码的情况下扩展类型的能力(即逆向建模)。扩展和 Objective-C 中的分类(categories)类似。(不过与 Objective-C 不同的是,Swift 的扩展没有名字。)
Swift 中的扩展可以:
- 添加计算型属性和计算静态属性
- 定义实例方法和类型方法
- 提供新的构造器
- 定义下标
- 定义和使用新的嵌套类型
- 使一个已有类型符合某个协议
在 Swift 中,你甚至可以对一个协议(Procotol)进行扩展,提供协议需要的实现,或者添加额外的功能能够对合适的类型带来额外的好处。你可以从协议扩展获取更多的细节。
扩展语法(Extension Syntax)
声明一个扩展使用关键字 extension :
extension SomeType {
// new functionality to add to SomeType goes here
}
一个扩展可以扩展一个已有类型,使其能够适配一个或多个协议(protocol)。当这种情况发生时,协议的名字应该完全按照类或结构体的名字的方式进行书写:
extension SomeType: SomeProtocol, AnotherProtocol {
// implementation of protocol requirements goes here
}
按照这种方式添加的协议遵循者(protocol conformance)被称之为在扩展中添加协议遵循者。
注意:如果你定义了一个扩展向一个已有类型添加新功能,那么这个新功能对该类型的所有已有实例中都是可用的,即使它们是在你的这个扩展的前面定义的。
计算型属性(Computed Properties)
扩展可以向已有类型添加计算型实例属性和计算型类型属性。下面的例子向 Swift 的内建 Double 类型添加了5个计算型实例属性,从而提供与距离单位协作的基本支持:
extension Double {
var km: Double { return self * 1_000.0 }
var m: Double { return self }
var cm: Double { return self / 100.0 }
var mm: Double { return self / 1_000.0 }
var ft: Double { return self / 3.28084 }
}
let oneInch = 25.4.mm
println("One inch is \(oneInch) meters")
// prints "One inch is 0.0254 meters"
let threeFeet = 3.ft
println("Three feet is \(threeFeet) meters")
// prints "Three feet is 0.914399970739201 meters"
这些计算属性表达的含义是把一个 型的值看作是某单位下的长度值。即使它们被实现为计算型属性,但这些属性仍可以接一个带有dot语法的浮点型字面值,而这恰恰是使用这些浮点型字面量实现距离转换的方式。
在上述例子中,一个 Double 型的值 1.0 被用来表示“1 米”。这就是为什么 m 计算型属性返 回 self——表达式 1.m 被认为是计算 1.0 的 Double 值。
其它单位则需要一些转换来表示在米下测量的值。1 千米等于 1,000 米,所以 km 计算型属 性要把值乘以 1_000.00 来转化成单位米下的数值。类似地,1 米有 3.28024 英尺,所以 ft计算型属性要把对应的 Double 值除以 3.28024 来实现英尺到米的单位换算。
这些属性是只读的计算型属性,所有从简考虑它们不用 get 关键字表示。它们的返回值是 Double 型,而且可以用于所有接受 Double 的数学计算中:
let aMarathon = 42.km + 195.m
println("A marathon is \(aMarathon) meters long")
// prints "A marathon is 42195.0 meters long"
注意:扩展可以添加新的计算属性,但是不可以添加存储属性,也不可以向已有属性添加属 性观测器(property observers)。
构造器(Initializers)
扩展可以向已有类型添加新的构造器。这可以让你扩展其它类型,将你自己的定制类型作为构造器参数,或者提供该类型的原始实现中没有包含的额外初始化选项。
扩展能向类中添加新的便利构造器,但是它们不能向类中添加新的指定构造器或析构器。指定构造器和析构器必须总是由原始的类实现来提供。
注意: 如果你使用扩展向一个值类型添加一个构造器,在该值类型已经向所有的存储属性提供默认值,而且没有定义任何定制构造器(custom initializers)时,你可以在值类型的扩展构造器中调用默认构造器(default initializers)和逐一成员构造器(memberwise initializers)。
正如在值类型的构造器代理中描述的,如果你已经把构造器写成值类型原始实现的一部分,上述规则不再适用。
下面的例子定义了一个用于描述几何矩形的定制结构体 Rect 。这个例子同时定义了两个辅助结构体 Size 和 nt ,它们都把 0.0 作为所有属性的默认值:
struct Size {
var width = 0.0, height = 0.0
}
struct Point {
var x = 0.0, y = 0.0
}
struct Rect {
var origin = Point()
var size = Size()
}
因为结构体 Rect 提供了其所有属性的默认值,所以正如默认构造器中描述的,它可以自动接受一个默认构造器和一个逐一成员构造器。这些构造器可以用于构造新的 Rect 实例:
let defaultRect = Rect()
let memberwiseRect = Rect(origin: Point(x: 2.0, y: 2.0),
size: Size(width: 5.0, height: 5.0))
你可以提供一个额外的使用特殊中心点和大小的构造器来扩展 Rect 结构体:
extension Rect {
init(center: Point, size: Size) {
let originX = center.x - (size.width / 2)
let originY = center.y - (size.height / 2)
self.init(origin: Point(x: originX, y: originY), size: size)
}
}
这个新的构造器首先根据提供的 center 和 size 值计算一个合适的原点。然后调用该结构体自动的逐一成员构造 器 init(origin:size:) ,该构造器将新的原点和大小存到了合适的属性中:
let centerRect = Rect(center: Point(x: 4.0, y: 4.0),
size: Size(width: 3.0, height: 3.0))
// centerRect's origin is (2.5, 2.5) and its size is (3.0, 3.0)
注意:如果你使用扩展提供了一个新的构造器,你依旧有责任保证构造过程能够让所有实例完全初始化。
方法(Methods)
扩展可以向已有类型添加新的实例方法和类型方法。下面的例子向 Int 类型添加一个名为 repetitions 的新实例方法:
extension Int {
func repetitions(task: () -> ()) {
for _ in 0..<self {
task()
}
}
}
这个 repetitions 方法使用了一个 () -> () 类型的单参数(single argument),表明函数没有参数而且没有返回值。
定义该扩展之后,你就可以对任意整数调用 repetitions 方法,实现的功能则是多次执行某任务:
3.repetitions({
println("Hello!")
})
// Hello!
// Hello!
// Hello!
可以使用 trailing 闭包使调用更加简洁:
3.repetitions {
println("Goodbye!")
}
// Goodbye!
// Goodbye!
// Goodbye!
修改实例方法(Mutating Instance Methods)
通过扩展添加的实例方法也可以修改该实例本身。结构体和枚举类型中修改 self 或其属性的方法必须将该实例方法标注为 mutating ,正如来自原始实现的修改方法一样。
下面的例子向Swift的 Int 类型添加了一个新的名为 square 的修改方法,来实现一个原始值的平方计算:
extension Int {
mutating func square() {
self = self * self
}
}
var someInt = 3
someInt.square()
// someInt is now 9
下标(Subscripts)
扩展可以向一个已有类型添加新下标。这个例子向Swift内建类型 Int 添加了一个整型下标。该下标 [n] 返回十进 制数字从右向左数的第n个数字。
- 123456789[0] returns 9
- 123456789[1] returns 8
…等等
extension Int {
subscript(var digitIndex: Int) -> Int {
var decimalBase = 1
while digitIndex > 0 {
decimalBase *= 10
--digitIndex
}
return (self / decimalBase) % 10
}
}
746381295[0]
// returns 5
746381295[1]
// returns 9
746381295[2]
// returns 2
746381295[8]
// returns 7
如果该 Int 值没有足够的位数,即下标越界,那么上述实现的下标会返回0,因为它会在数字左边自动补0:
746381295[9]
// returns 0, as if you had requested:
0746381295[9]
嵌套类型(Nested Types)
扩展可以向已有的类、结构体和枚举添加新的嵌套类型:
extension Int {
enum Kind {
case Negative, Zero, Positive
}
var kind: Kind {
switch self {
case 0:
return .Zero
case let x where x > 0:
return .Positive
default:
return .Negative
}
}
}
该例子向 Int 添加了新的嵌套枚举。这个名为 Kind 的枚举表示特定整数的类型。具体来说,就是表示整数是正数,零或者负数。
这个类子还向 Character 添加了一个新的计算实例属性,即 kind,用来返回合适的 Kind 枚 举成员。
现在,这个嵌套枚举可以和一个 Character 值联合使用了:
func printIntegerKinds(numbers: [Int]) {
for number in numbers {
switch number.kind {
case .Negative:
print("-", appendNewline: false)
case .Zero:
print("0", appendNewline: false)
case .Positive:
print("+", appendNewline: false)
}
}
print("\n")
}
printIntegerKinds([3, 19, -27, 0, -6, 0, 7])
// prints "+ + - 0 - 0 +"
函数 printIntegerKinds 的输入是一个 Int 数组值并对其字符进行迭代。在每次迭代过程中,考虑当前字符的 kind 计算属性,并打印出合适的类别描述。
注意: 由于已知 number.kind 是 Int.Kind 型,所以 Int.Kind 中的所有成员值都可以使用 switch 语句里的形式简写,比如使用 . Negative 代替 Int.Kind.Negative 。